Propagación y control de vibraciones en medios discretos y continuos
- Maciá Lang, Fabricio
- Enrique Zuazua Zuzendaria
Defentsa unibertsitatea: Universidad Complutense de Madrid
Fecha de defensa: 2002(e)ko apirila-(a)k 16
- Juan José López Velázquez Presidentea
- José María Arrieta Algarra Idazkaria
- Alexander Markowich Peter Kidea
- Luis Vega González Kidea
- Pablo Pedregal Tercero Kidea
Mota: Tesia
Laburpena
En esta memoria se estudian fenómenos de propagación y concentración de ondas continuas y discretas y se analizan resultados de controlabilidad exacta uniforme para la ecuación de ondas y de Schrödinger semidiscreta, Se introduce como concepto novedoso e interesante la versión discreta de las Medidas de Wigner. Esta se define de forma intrinseca e independiente de las posibles interpolaciones espaciales. Se estudian sus propiedades más relevantes y se analiza la relación con la Medida de Wigner en su versión continua. Se aplica esta nueva herramienta a la ecuación de ondas con coeficientes variables, discretizada espacialmente y con condiciones de contorno periodicas. Se prueban resultados de concentración y de no propagación, lo que da lugar a la construcción de contraejemplos que prueban que la desigualdad de observabilidad para el caso discreto no se verifica de forma uniforme. Esto explica y clarifica la no controlabilidad exacta uniforme de la ecuación de ondas semidiscreta. Posteriormente se considera el problema de la controlabilidad exacta para este mismo problema con las frecuencias altas convenientemente filtradas. Mediante un análisis a altas frecuencias, se obtienen condiciones necesarias y suficientes, en términos de caracterizaciones geométricas de los dominios w (soporte del control) y tiempo T (tiempo durante el cual actúa el control), para la obtención de la desigualdad de observabilidad uniforme. Finalmente se estudia también la propiedad de la observabilidad uniforme para la ecuación de Schrödinger semidiscreta, con condiciones de contorno periódico y con las frecuencias altas filtradas. Se prueba en este caso que el tiempo T se puede tomar arbitrariamente pequeño.