Statistical matching en la práctica – Una aplicación a la evaluación del sistema educativo mediante PISA y TALIS
- Leunda Iztueta, Ixiar 1
- Garmendia Navarro, Ines
- Etxeberria Murgiondo, Juan 1
-
1
Universidad del País Vasco/Euskal Herriko Unibertsitatea
info
Universidad del País Vasco/Euskal Herriko Unibertsitatea
Lejona, España
ISSN: 0212-4068, 1989-9106
Year of publication: 2017
Volume: 35
Issue: 2
Pages: 371-388
Type: Article
More publications in: Revista de investigación educativa, RIE
Abstract
Statistical matching methods are aimed at the integration of information collected through multiple sources, usually, surveys drawn from some target population. As opposed to record linkage methods -where we search for identical units-, in statistical matching we search for similar units in order to find statistical relations across databases. Methods: Statistical matching is feasible provided that the independent surveys share a common block of variables. A particular solution is based on imputation methods for missing data: first, the distinct files are concatenated (i.e. rows and columns are joined together to form a unique file); next, empty cells corresponding to non-observed values are interpreted as missing data, and they are imputed according to observed data. Results: The fundamental concepts of statistical matching are shown, and the process is illustrated with the PISA (2012) and TALIS (2013) educational studies with Spain’s data. Imputations are carried out using mice package from the free R software. A first validation of the results is performed. Conclusions: Statistical matching offers high potential benefits for the social sciences since it enables to relate information from independent information sources. These techniques can now be applied with relative ease thanks to the development of tools such as R computing environment.
Bibliographic References
- Breakspear, S. (2012). The policy impact of PISA: An Exploration of the Normative Effects of International Benchmarking in School System Performance. OECD Journals, 71, 1–32. doi:http://dx.doi.org/10.1787/19939019
- Choi, A., & Jerrim, J. (2016). The Use (and Misuse) of PISA in Guiding Policy Reform: The Case of Spain. Comparative education. 56(2), 230–245. doi:http://dx.doi.org/10 .1080/03050068.2016.1142739
- D’Orazio, M., Di Zio, M., & Scanu, M. (2006). Statistical Matching: Theory and Practice. NJ: Wiley.
- D’Orazio, M. (2012). StatMach: Statistical Matching. R package version 1.2.0. Recuperado de http://CRAN.R-project.org/package=StatMatch
- D’Orazio, M. (2013). Statistical Matching: Metodological issues and practice with R-StatMatch (or. 69). XXVI. Seminario Internacional de Estadística. Eustat. Recuperado de http:// www.eustat.es/prodserv/seminario_i.html#axzz2sF9JV1rV
- Eurostat (2008). Recommendations on the use of methodologies for the integration of surveys and administrative data. Recuperado de http://www.cros-portal.eu/sites/default/files// Report_of_WP2.doc
- Fernández-Díaz, M. J.; Rodríguez-Mantilla J. M., & Martínez-Zarzuelo, A. (2016). PISA y TALIS ¿congruencia o discrepancia? RELIEVE, 22(1), art. M6. doi:http://dx.doi. org/10.7203/relieve.22.1.8247
- González-Such, J., Sancho-Álvarez, C., & Sánchez-Delgado, P. (2016). Cuestionarios de contexto pisa: Un estudio sobre los indicadores de evaluación. RELIEVE, 22(1), art. M7. doi:http://dx.doi.org/10.7203/relieve.22.1.8274
- Gustafsson, J. E. (2003). What Do We Know About Effects of School Resources on Educational Results? Swedish Economic Policy Review, 10, 77-110.
- Jolani S, Frank L.E., & van Buuren S (2014). Dual imputation model for incomplete longitudinal data. British Journal of Mathematical and Statistical Psychology, 67(2), 197-212. doi: 10.1111/bmsp.12021
- Jong R., van Buuren S., & Spiess M. (2014). Multiple imputation of predictor variables using generalized additive models. Communications in Statistics Simulation and Computation, 45(3), 1-18. doi:http://dx.doi.org/10.1080/03610918.2014.911894
- Kaplan, D., & Turner, A. (2012). Statistical Matching of PISA 2009 and TALIS 2008 Data in Iceland (OECD Education Working Papers). Paris: Organisation for Economic Co-operation and Development. Recuperado de http://www.oecd-ilibrary. org/;jsessionid=2ah7v0n0eg9ce.x-oecd-live-02content/workingpaper/ 5k97g3zzvg30en
- Kaplan, D., & Turner, A. (2013). Data fusion with international large scale assessments: a case study using the OECD PISA and TALIS Surveys. Springer-Verlag. Recuperado de http://link.springer.com/article/10.1186%2F2196-0739-1-6/fulltext.html
- Leulescu, A., & Agafitei, M. (2013). Statistical matching: A model based approach for data integration. Luxembourg: European Commission, Eurostat. Publications Office.
- OECD (2012). Pisa 2012. Recuperado de http://www.oecd.org/pisa/keyfindings/pisa2012-results.htm
- OECD (2013). Talis 2013. Recuperado de http://www.oecd.org/edu/school/talis.htm
- Rässler, S. (2002). Statistical matching. A frequentist theory, practical applications, and alternative Bayesian approaches. New York: Springer.
- Rubin. D.B. (1987). An overview on multiple imputation. Recuperado de www.amstat.org/sections/srms/Proceedings/papers/1988_016.pdf
- Taut, S., & Palacios, D. (2016). Interpretaciones no intencionadas e intencionadas y usos de los resultados de PISA: Una perspectiva de validez consecuencial. RELIEVE, 22(1), art. M8. doi:http://dx.doi.org/10.7203/relieve22.1.8294
- van Buuren, S., & Groothuis-Oudshoorn, K. (2011). MICE: Multivariate Imputation by Chained Equations in R. Journal of Statistical Software, 45(3), 1–67.
- van Buuren, S. (2014). Mice. Imputation by random forests. Recuperado de http://www. inside-r.org/packages/cran/mice/docs/mice.impute.rf
- Wheater, R. (2013). Achievement of 15 year olds in England: PISA 2012 national report. OECD Programme for International Student Assessment. Recuperado de https://www. nfer.ac.uk/publications/PQUK02/PQUK02.pdf