Corrigendum to Longitudinal machine learning modeling of MS patient trajectories improves predictions of disability progression: [Computer Methods and Programs in Biomedicine, Volume 208, (September 2021) 106180

  1. De Brouwer, E.
  2. Becker, T.
  3. Moreau, Y.
  4. Havrdova, E.K.
  5. Trojano, M.
  6. Eichau, S.
  7. Ozakbas, S.
  8. Onofrj, M.
  9. Grammond, P.
  10. Kuhle, J.
  11. Kappos, L.
  12. Sola, P.
  13. Cartechini, E.
  14. Lechner-Scott, J.
  15. Alroughani, R.
  16. Gerlach, O.
  17. Kalincik, T.
  18. Granella, F.
  19. Grand'Maison, F.
  20. Bergamaschi, R.
  21. Sá, M.J.
  22. Van Wijmeersch, B.
  23. Soysal, A.
  24. Sanchez-Menoyo, J.L.
  25. Solaro, C.
  26. Boz, C.
  27. Iuliano, G.
  28. Buzzard, K.
  29. Aguera-Morales, E.
  30. Terzi, M.
  31. Trivio, T.C.
  32. Spitaleri, D.
  33. Van Pesch, V.
  34. Shaygannejad, V.
  35. Moore, F.
  36. Oreja-Guevara, C.
  37. Maimone, D.
  38. Gouider, R.
  39. Csepany, T.
  40. Ramo-Tello, C.
  41. Peeters, L.
  42. Mostrar todos los/as autores/as +
Revista:
Computer methods and programs in biomedicine

ISSN: 1872-7565

Año de publicación: 2022

Volumen: 213

Páginas: 106479

Tipo: Errata

DOI: 10.1016/J.CMPB.2021.106479 GOOGLE SCHOLAR lock_openAcceso abierto editor

Objetivos de desarrollo sostenible