Enfoque terapéutico práctico sobre la administración de fármacos intratecales para el dolor crónicoRevisión narrativa

  1. Borja Mugabure Bujedo 1
  2. Miguel Marín Paredes 1
  3. Deiene Lasuen Aguirre 2
  4. María Luisa Franco Gay 2
  1. 1 Hospital Universitario de Donostia, San Sebastián
  2. 2 Hospital Universitario de Cruces, Barakaldo
Revista:
MPJ Multidisciplinary Pain Journal

ISSN: 2697-2263

Año de publicación: 2021

Número: 1

Tipo: Artículo

Otras publicaciones en: MPJ Multidisciplinary Pain Journal

Resumen

La elección inicial de la terapia intratecal debe tener en cuenta las características individuales del paciente, la localización del dolor, la respuesta a terapias previas, las afecciones médicas comórbidas y los antecedentes psiquiátricos. El panel de la Conferencia de Consenso sobre la Polianalgesia (PACC) proporciona periódicamente directrices de consenso en relación con la eficacia y la seguridad de la infusión intratecal y postula líneas jerárquicas de atención en la elección de los agentes farmacológicos utilizados. La monoterapia de terapia intratecal tanto con morfina como con ziconotida se considera la primera línea de elección para el dolor crónico localizado y difuso de etiologías relacionadas y no relacionadas con el cáncer. Sin embargo, un punto de consenso hizo hincapié en el uso de ziconotida, a menos que esté contraindicado, como terapia intratecal de primera línea en pacientes con dolor crónico no relacionado con el cáncer. Estas recomendaciones están basadas, en el caso de la morfina, en estudios no controlados y prospectivos, y en el caso de la ziconotida, en ensayos controlados aleatorios y estudios de observación prospectivos. Como segunda línea de tratamiento se recomienda asociar bupivacaína y/o clonidina. Si bien la terapia combinada es una indicación fuera de ficha técnica, es la más utilizada en la práctica clínica actual. Los fármacos experimentales como la resiniferatoxina necesitan más estudios antes de ser incorporados a nuestro arsenal terapéutico. Por todo ello, para realizar un enfoque terapéutico práctico, sigue siendo necesario conocer tanto los fármacos clásicos como contar con agentes intratecales novedosos, más seguros y eficaces para el tratamiento del dolor crónico.

Referencias bibliográficas

  • Hayek SM, Hanes MC. Intrathecal therapy for chronic pain: current trends and future needs. Curr Pain Headache Rep. 2014;18(1):388. DOI: 10.1007/s11916-013-0388-x.
  • Rudd RA, Seth P, David F, SCholl L. Increases in Drug and Opioid-Involved Overdose Deaths - United States, 2010-2015. MMWR Morb Mortal Wkly Rep. 2016;65(50-51):1445-52. DOI: 10.15585/mmwr.mm655051e1.
  • Deer TR, Pope JE, Hayek SM, Bux A, Buchser E, Eldabe S, et al. The Polyanalgesic Consensus Conference (PACC): Recommendations on intrathecal drug infusion systems best practices and guidelines. Neuromodulation. 2017;20(2): 96-132. DOI: 10.1111/ner.12538.
  • Deer TR, Pope JE, Hanes MC, McDowell GC. Intrathecal therapy for chronic pain: a review of morphine and ziconotide as firstline options. Pain Med. 2019;20(4):784-98. DOI: 10.1093/pm/pny132.
  • Yaksh TL, Fisher CJ, Hockman TM, Wiese AJ. Current and future issues in the development of spinal agents for the management of pain. Curr Neuropharmacol. 2017;15(2):232-59. DOI: 10.2174/1570159X14666160307145542.
  • Brill S, Gurman GM, Fisher A. A history of neuroaxial administration of local analgesics and opioids. Eur J Anesthesiology. 2004;21(4):329-30. DOI: 10.1097/00003643-200404000-00019.
  • Yaksh TL, Rudy TA. Analgesia mediated by a direct spinal action of narcotics. Science. 1976;192(4246):1357-8. DOI: 10.1126/science.1273597.
  • Wang JK, Nauss LA, Thomas JE. Pain relief by intrathecally applied morphine in man. Anesthesiology. 1979;50(2):149-1. DOI: 10.1097/00000542-197902000-00013.
  • Behar M, Magora F, Olswang D, Davidson JT. Epidural morphine in treatment of pain. Lancet. 1979;1(8115):527-9. DOI: 10.1016/S0140-6736(79)90947-4.
  • Bernards CM. Understanding the physiology and pharmacology of epidural and intrathecal opioids. Best Pract Res Clin Anaesthesiol. 2002;16(4):489-505. DOI: 10.1053/bean.2002.0255.
  • Bernards CM. Recent insights into the pharmacokinetics of spinal opioids and the relevance to opioid selection. Curr Opin Anaesthesiol. 2004;17(5):441-7. DOI: 10.1097/00001503-200410000-00015.
  • Bujedo BM. Spinal Opioid Bioavailability in postoperative pain. Pain Practice. 2014;14(4):350-64. DOI: 10.1111/papr.12099.
  • Bahney J, Von Bartheld CS. The cellular composition and glia-neuron ratio in the spinal cord of a human and a nonhuman primate: comparison with other species and brain regions. Anat Rec (Hoboken). 2018;301(4):697-710. DOI: 10.1002/ar.23728.
  • Todd AJ. Neuronal circuitry for pain processing in the dorsal horn. Nat Rev Neurosci. 2010;11(12):823-36. DOI: 10.1038/nrn2947.
  • Heinricher MM, Tavares I, Leith JL, Lumb BM. Descending control of nociception: Specificity, recruitment and plasticity. Brain Res Rev. 2009;60(1):214-25. DOI: 10.1016/j.brainresrev.2008.12.009.
  • Bujedo BM. Current evidence for spinal opioid selection in postoperative pain. Korean J Pain. 2014;27(3):200-9. DOI: 10.3344/kjp.2014.27.3.200.
  • Bujedo BM, Santos SG, Azpiazu AU. A review of epidural and intrathecal opioids used in the management of postoperative pain. J Opioid Manag. 2012;8(3):177-92. DOI: 10.5055/jom.2012.0114.
  • Covino BG. Pharmacology of local anaesthetic agents. Br J Anaesth. 1986;58(7):701-16. DOI: 10.1093/bja/58.7.701.
  • Gissen AJ, Covino BG, Gregus J. Differential sensitivity of fast and slow fibers in mammalian nerve. III. Effect of etidocaine and bupivacaine on fast/slow fibers. Anesth Analg. 1982;61(7):570-5. DOI: 10.1213/00000539-198207000-00004.
  • Boswell MV, Iacono RP, Guthkelch AN. Sites of action of subarachnoid lidocaine and tetracaine: observations with evoked potential monitoring during spinal cord stimulator implantation. Reg Anesth. 1992;17(1):37-42.
  • Bernards CM. Cerebrospinal fluid and spinal cord distribution of baclofen and bupivacaine during slow intrathecal infusion in pigs. Anesthesiology. 2006;105(1):169-78. DOI: 10.1097/00000542-200607000-00027.
  • Flack SH, Anderson CM, Bernards CM. Morphine distribution in the spinal cord after chronic infusion in pigs. Anesth Analg. 2011;112(2):460-4. DOI: 10.1213/ANE.0b013e318203b7c0.
  • Tangen KM, Leval R, Mehta AI, Linninger AA. Computational and in vitro experimental investigation of intrathecal drug distribution: parametric study of the effect of injection volume, cerebrospinal fluid pulsatility, and drug uptake. Anesth Analg. 2017;124(5):1686-96. DOI: 10.1213/ANE.0000000000002011.
  • Tangen KM, Hsu Y, Zhu DC, Linninger AA. CNS wide simulation of flow resistance and drug transport due to spinal microanatomy. J Biomech. 2015;48(10):2144-54. DOI: 10.1016/j.jbiomech.2015.02.018.
  • Batta B, Kocaoglu M, BulaKbasi N, Husmen G, Tuba Sanal H, Tayfun C. Cerebrospinal fluid flow imaging by using phase-contrast MR technique. Br J Radiol. 2011;84(1004):758-65. DOI: 10.1259/bjr/66206791.
  • Henry-Feugeas MC, Idy-Peretti I, Baledent O, Poncelet-Didon A, Zannoli G, Bittoun J, et al. Origin of subarachnoid cerebrospinal fluid pulsations: a phase-contrast MR analysis. Magn Reson Imaging 2000; 18(4): 387-95. DOI: 10.1016/S0730-725X(99)00142-3.
  • Friese S, Hamhaber U, Erb M, KueKer W, Klose U. The influence of pulse and respiration on spinal cerebrospinal fluid pulsation. Invest Radiol. 2004;39(2):120-30. DOI: 10.1097/01.rli.0000112089.66448.bd.
  • Bert RJ, Hayek SM, Yaksh TL. Modeling spinal intrathecal drug distribution: the challenge of defining and predicting cerebrospinal fluid dynamics. Anesth Analg. 2017;124(5):1403-6. DOI: 10.1213/ANE.0000000000002071.
  • Grider JS, Harned ME, Etscheidt MA. Patient selection and outcomes using a low-dose intrathecal opioid trialing method for chronic nonmalignant pain. Pain Physician. 2011;14(4):343-51.
  • Bhadelia RA, Madan N, Zhao Y, Wagshul ME, Heilman C, Butler JP, et al. Physiology-based MR imaging assessment of CSF flow at the foramen magnum with a Valsalva maneuver. AJNR Am J Neuroradiol. 2013;34(9):1857-62. DOI: 10.3174/ajnr.A3509.
  • Rauck RL, Cherry D, Boyer MF, Kosek P, Dunn J, Alo K. Long-term intrathecal opioid therapy with a patient-activated, implanted delivery system for the treatment of refractory cancer pain. J Pain. 2003;4(8):441-7. DOI: 10.1067/S1526-5900(03)00730-2.
  • Yamada S, Miyazaki M, Yamashita Y, Ouyang C, Yui M, Nakahashi M, et al. Influence of respiration on cerebrospinal fluid movement using magnetic resonance spin labeling. Fluids Barriers CNS. 2013;10(1):36. DOI: 10.1186/2045-8118-10-36.
  • Ummenhofer WC, Arends RH, Shen DD, Bernards CM. Comparative spinal distribution and clearance kinetics of intrathecally administered morphine, fentanyl, alfentanil, and sufentanil. Anesthesiology. 2000;92(3):739-53. DOI: 10.1097/00000542-200003000-00018.
  • Reina MA, Villanueva MC, Maches F, Carrera A, López A, De Andrés JA. The ultrastructure of the human spinal nerve root cuff in the lumbar spine. Anesth Analg. 2008;106(1):339-44. DOI: 10.1213/01.ane.0000295803.31074.dc.
  • Pollay M. The function and structure of the cerebrospinal fluid outflow system. Cerebrospinal Fluid Res. 2010;7:9. DOI: 10.1186/1743-8454-7-9.
  • Hamza M, Doleys D, Wells M, Weisbein J, Hoff J, Martin M, et al. Prospective study of 3-year follow-up of low-dose intrathecal opioids in the management of chronic nonmalignant pain. Pain Med. 2012;13(10):1304-13. DOI: 10.1111/j.1526-4637.2012.01451.x.
  • WilKes DM, Orillosa SJ, HustaK EC, Williams CG, Doulatram GR, Solanki DR, et al. Efficacy, safety, and feasibility of the morphine microdose method in community-based clinics. Pain Med. 2018;19(9):1782-9. DOI: 10.1093/pm/pnx132.
  • Deer TR, Prager J, Levy R, Rathmell J, Buchser E, Burton A, et al. Polyanalgesic Consensus Conference 2012: consensus on diagnosis, detection, and treatment of catheter-tip granulomas (inflammatory masses). Neuromodulation. 2012;15(5):483-95; discussion 96. DOI: 10.1111/j.1525-1403.2012.00449.x.
  • Veizi IE, Hayek SM, Hanes M, Galica R, Katta S, Yaksh T. Primary hydromorphone-related intrathecal catheter tip granulomas: is there a role for dose and concentration? Neuromodulation. 2016;19(7):760-9. DOI: 10.1111/ner.12481.
  • Southwell DG, Osorio JA, Liverman CS, Friedman LM, Naidu RK, Poree LR, et al. Intrathecal catheter-associated inflammatory mass in a neurofibromatosis type-1 patient receiving fentanyl and bupivacaine. Surg Neurol Int. 2017;8:159. DOI: 10.4103/sni.sni_80_17.
  • Zacest AC, Carlson JD, Nemecek A, Burchiel KJ. Surgical management of spinal catheter granulomas: operative nuances and review of the surgical literature. Neurosurgery. 2009;65(6):1161-4. DOI: 10.1227/01.NEU.0000359223.11215.D9.
  • Hassenbusch SJ, Portenoy RK. Current practices in intraspinal therapy--a survey of clinical trends and decision making. J Pain Symptom Manage. 2000;20(2):S4-11. DOI: 10.1016/S0885-3924(00)00203-7.
  • Veizi IE, Hayek SM, Narouze S, Pope JE, Mekhail N. Combination of intrathecal opioids with bupivacaine attenuates opioid dose escalation in chronic noncancer pain patients. Pain Med 2011; 12(10): 1481-9. DOI: 10.1111/j.1526-4637.2011.01232.x.
  • Hayek SM, Veizi IE, Hanes M. Intrathecal hydromorphone and bupivacaine combination therapy for post-laminectomy syndrome optimized with patient-activated bolus device. Pain Med. 2016;17(3):561-71.
  • Galica RJ, Hayek SM, Veizi IE, McEwan MT, Katta S, Ali O, et al. Intrathecal trialing of continuous infusion combination therapy with hydromorphone and bupivacaine in failed back surgery patients. Neuromodulation. 2018;21(7):648-54. DOI: 10.1111/ner.12737.
  • Veizi IE, Hayek SM, Hanes M, Galica R, Katta S, Yaksh T. Primary hydromorphone-related intrathecal catheter tip granulomas: is there a role for dose and concentration? Neuromodulation. 2016;19(7):760-9. DOI: 10.1111/ner.12481.
  • Veizi IE, Tornero-Bold M, Hayek SM. Resolution of intrathecal hydromorphone or morphine-induced peripheral edema by opioid rotation to fentanyl: a case series. Pain Pract. 2016;16(6):E94-8. DOI: 10.1111/papr.12443.
  • Schmidtko A, Lotsch J, Freynhagen R, Geisslinger G. Ziconotide for treatment of severe chronic pain. Lancet. 2010;375(9725):1569-77. DOI: 10.1016/S0140-6736(10)60354-6.
  • Rauck RL, Wallace MS, Leong MS, Minehart M, Webster LR, Charapata SG, et al. A randomized, double-blind, placebo-controlled study of intrathecal ziconotide in adults with severe chronic pain. J Pain Symptom Manage. 2006;31(5):393-406. DOI: 10.1016/j.jpainsymman.2005.10.003.
  • Wallace MS, Charapata SG, Fisher R, Byas-Smith M, Staats PS, Mayo M, et al. Intrathecal ziconotide in the treatment of chronic nonmalignant pain: a randomized, double-blind, placebo-controlled clinical trial. Neuromodulation. 2006;9(2):75-86. DOI: 10.1111/j.1525-1403.2006.00055.x.
  • Wallace MS, Rauck RL, Fisher R, Charapata SG, Ellis D, Dissanayake S. Intrathecal ziconotide for severe chronic pain: safety and tolerability results of an open-label, long-term trial. Anesth Analg. 2008;106(2):628-37. DOI: 10.1213/ane.0b013e3181606fad.
  • Hayek SM, Hanes MC, Wang C, Veizi IE. Ziconotide combination intrathecal therapy for noncancer pain is limited secondary to delayed adverse effects: a case series with a 24-month follow-up. Neuromodulation. 2015;18(5):397-403. DOI: 10.1111/ner.12270.
  • Deer TR, Kim C, Bowman R, Tolentino D, Stewart C, Tolentino W. Intrathecal ziconotide and opioid combination therapy for noncancer pain: an observational study. Pain Physician. 2009;12(4):E291-6.
  • Wallace MS, Kosek PS, Staats P, Fisher R, Schultz DM, Leong M. Phase II, open-label, multicenter study of combined intrathecal morphine and ziconotide: addition of ziconotide in patients receiving intrathecal morphine for severe chronic pain. Pain Med. 2008;9(3):271-81. DOI: 10.1111/j.1526-4637.2007.00355.x.
  • DuPoiron D, Rchard H, Chabert-Desnot V, Devys C, Leynia P, Boisdron-Celle M. In vitro stability of low-concentration ziconotide alone or in admixtures in intrathecal pumps. Neuromodulation. 2014;17(5):472-82. DOI: 10.1111/ner.12142.
  • Shields De, Liu W, Gunning K, Montenegro R. Statistical evaluation of the chemical stability of ziconotide solutions during simulated intrathecal administration. J Pain Symptom Manage. 2008;36(1):e4-6. DOI: 10.1016/j.jpainsymman.2008.01.007.
  • Shields D, Montenegro R, Ragusa M. Chemical stability of drug mixtures combining ziconotide with morphine or hydromorphone during simulated intrathecal administration. Neuromodulation. 2005;8(4):257-63. DOI: 10.1111/j.1525-1403.2005.00034.x.
  • Feng X, Zhang F, Dong R, Li W, Liu J, Zhao X, et al. Intrathecal administration of clonidine attenuates spinal neuroimmune activation in a rat model of neuropathic pain with existing hyperalgesia. Eur J Pharmacol. 2009;614(1-3):38-43. DOI: 10.1016/j.ejphar.2009.04.044.
  • Guevara-López U, Aldrete JA, Covarrubias-Gómez A, Hernández-Pando RE, López-Muñoz FJ. Absence of histological changes after the administration of a continuous intrathecal clonidine in Wistar rats. Pain Practice. 2009;9(2):122-9. DOI: 10.1111/j.1533-2500.2008.00251.x.
  • Sites BD, Beach M, Biggs R, et al. Intrathecal clonidine added to a bupivacaine-morphine spinal anesthetic improves postoperative analgesia for total knee arthroplasty. Anesth Analg. 2003;96(4):1083-8. DOI: 10.1213/01.ANE.0000055651.24073.59.
  • Capogna G, Celleno D, Zangrillo A, Costantino P, Foresta S. Addition of clonidine to epidural morphine enhances postoperative analgesia after cesarean delivery. Reg Anesth Pain Med. 1995;20(1):57-61.
  • Filos KS, Goudas lC, Patroni O, Polyzou V. Hemodynamic and analgesic profile after intrathecal clonidine in humans. A dose-response study. Anesthesiology. 1994;81(3):591-601; 27A-28A. DOI: 10.1097/00000542-199409000-00011.
  • Fitzgibbon D, Rapp S, Butler S, Terman G, Dolack G, DuPen S, et al. Rebound hypertension and withdrawal associated with discontinuation of an infusion of epidural clonidine. Anesthesiology. 1996;84(3):729-31. DOI: 10.1097/00000542-199603000-00031.
  • Iadarola MJ, Gonnella GL. Resiniferatoxin for pain treatment: an interventional approach to personalized pain medicine. Open Pain J. 2013;6:95-107. DOI: 10.2174/1876386301306010095.
  • Brown DC, Agnello K, Iadarola MJ. Intrathecal resiniferatoxin in a dog model: efficacy in bone cancer pain. Pain. 2015;156(6):1018-24. DOI: 10.1097/j.pain.0000000000000115.
  • Neubert JK, Karai l, Jun JH, Kim HS, Olah Z, Iadarola MJ. Peripherally induced resiniferatoxin analgesia. Pain. 2003;104(1-2):219-28. DOI: 10.1016/S0304-3959(03)00009-5.
  • Karai l, Brown DC, Mannes AJ, Connelly ST, Brown J, Gandal M, et al. Deletion of vanilloid receptor 1-expressing primary afferent neurons for pain control. J Clin Invest. 2004;113(9):1344-52. DOI: 10.1172/JCI20449.
  • Iadarola Mj, Mannes AJ. The vanilloid agonist resiniferatoxin for interventional-based pain control. Curr Top Med Chem. 2011;11(17):2171-9. DOI: 10.2174/156802611796904942.
  • Bates BD, Mitchell K, Keller JM, Chan CC, Swaim WD, Yaskovich R, et al. Prolonged analgesic response of cornea to topical resiniferatoxin, a potent TRPV1 agonist. Pain. 2010;149(3):522-8. DOI: 10.1016/j.pain.2010.03.024.
  • Binshtok AM, Bean BP, Woolf CJ. Inhibition of nociceptors by TRPV1-mediated entry of impermeant sodium channel blockers. Nature. 2007;449(7162):607-10. DOI: 10.1038/nature06191.
  • Leo L, Schulte M, Schmitt LI, Schäfers M, Kleinschnitz C, Hagenacker T. Intrathecal resiniferatoxin modulates TRPV1 in DRG neurons and reduces TNF-induced pain-related behavior. Mediators Inflamm. 2017;2017:2786427. DOI: 10.1155/2017/2786427.
  • Unger MD, Pleticha J, Steinauer J, Kanwar R, Diehn F, LaVallee KT, et al. Unilateral epidural targeting of resiniferatoxin induces bilateral neurolysis of spinal nociceptive afferents. Pain Med. 2019;20(5):897-906. DOI: 10.1093/pm/pny276.
  • Deer TR, Abd-Elsayed A, Falowski S, Hagedorn JM, Abejón D, Russo M, et al. Practice choices in targeted intrathecal drug delivery: an online survey conducted by the Polyanalgesic Consensus Committee. Neuromodulation. 2020 Dec 23. DOI: 10.1111/ner.13335. Online ahead of print.