Impacto del aire enrarecido de una cueva mediterránea en humanos, a nivel cardiovascular

  1. Ignasi de Yzaguirre y Maura
  2. Gonzalo Grazioli
  3. Monica Domènech Feira-Carot
  4. Diego Dulanto Zabala
  5. Marta Sitges Carreño
  6. Josep Antoni Gutiérrez Rincón
Journal:
Apunts: Medicina de l'esport

ISSN: 1886-6581 0213-3717

Year of publication: 2016

Volume: 51

Issue: 190

Pages: 40-47

Type: Article

DOI: 10.1016/J.APUNTS.2016.01.002 DIALNET GOOGLE SCHOLAR

More publications in: Apunts: Medicina de l'esport

Abstract

Introduction: Study of physiological adaptation in people breathing rarefied air in a cave. Objective: To investigate the arrhythmogenic capacity of rarefied air and changes the autonomic nervous system (sympathetic and parasympathetic). To establish cutoff levels beyond which preventive measures must be taken. Method: The study included 25 cavers, monitored by ECG Holter and blood pressure measurements in 2 situations at rest, one outside the cave breathing normal air composition (NA), and the other underground, breathing rarefied air of natural origin (RA) in a confined space (O2 : 13.38 ± 1.5% and CO2 : 2.23 ± 0.31%). Results: Resting heart rate (NA:81.9 ±15.1 beats per minute (bpm) vs.RA: 83.8 ± 17.3 bpm; P ≤ .58). Systolic blood pressure (NA: 130.3 ± 17.2 mmHg vs. RA: 140.2 ± 21.3 mmHg; P ≤ .0003). Diastolic blood pressure (NA: 78.2 ± 11.0 mmHg vs. RA: 85.5 ± 11.2 mmHg; P ≤ .0002). Heart rate variability: RMSSD (NA: 25.9 ± 13.8 ms vs. RA: 36.9 ± 17.8 ms; P ≤ .003), NN50 (NA: 49.0 ± 66.2 bpm vs. RA: 111.7 ± 102.8 bpm; P ≤ .003); pNN50 (NA: 11.3% ± 7.5 vs. RA: 15.9 ± 15.8%; P ≤ .0013). Fourier analysis: TP (NA: 1,759.5 ms 2 vs. RA: 1,611.5 ms 2 ; P ≤ .04); HF (NA: 301.5 ± 329.4 ms 2 vs. RA: 662.3 ± 762.8 ms 2 ; P ≤ .02). An increase in arrhythmic events is detected when comparing the hour that included test 1 (HNA) in normal air with the hour that included test 2 (HRA) with rarefied air. There is a correlation of arrhythmic events in both situations: (ventricular ectopic beats in RA) = 2.9859 × (ventricular ectopic beats NA) + 1.5622; n = 24; r = 0.814; P <.0001.Conclusions: Exposure to RA at rest for 10 minutes causes a pressor response in systolic and diastolic blood pressure compared to normal air (NA). Heart rate variability in a standardised situation and rest shows a parasympathetic sponse, with increased rMSSD and HF parameters when subjects are subjected to an atmosphere of RA. In RA, the subjects had three times more arrhythmic events when compared to NA.

Bibliographic References

  • 1. Halbert EJM. Evaluation of carbon dioxide and oxygen data in atmospheres using the Gibbs Triangle and Cave Air Index. Helictite. Journal of Australasian Cave Research. 1982;20:60---8.
  • 2. Bourges F, Mangin A, d’Hulst D. Radon and CO2 as markers of cave atmosphere dynamics: Evidence and pitfalls in underground confinement; application to cave conservation. Comunicación al coloquio Climate Changes: The Karst Record III. Montpellier (Francia), 11-14 de marzo de 2003.
  • 3. Bourges F, Mangin A, d’Hulst D. Le gaz carbonique dans la dynamique de l’atmosphère des cavités karstiques, l’exemple de l’aven d’Orgnac (Ardèche). Note aux C.R. Acad. des Sci. Paris. Science de la Terre et des Planètes /Earth and Planetary Sciences. 2001;333:685---92.
  • 4. Bourges F, d’Hulst D, Mangin A. Le CO2 dans l’atmosphère des grottes, sa place dans la dynamique des systèmes karstiques. Communicación a la Réunion des Sciences de la Terre de Brest, 31 de marzo-3 de abril de 1998.
  • 5. Sechzer PH, Egbert LD, Linde HW, Cooper DY, Dripps RD, Price HL. Effect of carbon dioxide inhalation on arterial pressure, ECG and plasma catecholamines and 17-OH corticosteroids in normal man. J Appl Physiol. 1960;15:454---8.
  • 6. Guillerm R, Radziszewski E. Effects on man of 30-day exposure to a PiCO2 of 14 torr (2%): Application to exposure limits. KE Schaefer editor. Undersea Biom Res. 1979;6:91---114.
  • 7. Mixon W. More on bad air in cave. American Caving Accidents. NSS News. 2000;April:2.
  • 8. Radziszewski E, Giacomoni L, Guillerm R. Effets physiologiques chez l’homme du confinement de longue durée en atmosphère enrichie en dioxyde de carbone. Proceedings of a colloquium on Space and Sea. Marseille, France, 24-27 noviembre de 1987, ESA SP-280 ED. Marseille 1988: 19-23.
  • 9. James J, Dyson J. Cave science topics: CO2 in caves. Caving International. 1981; 13: 54-9.
  • 10. Bounhoure JP, Broustet JP, Cahen P, Lesbre JP, Letac B, Mallion JM, et al. Hypoxia. An invisible enemy. Guidelines for exercise tests, by the working group on exercise tests and rehabilitation of the French Society of Cardiology. Arch Mal Coeur Vaiss. 1979; 72: 30.
  • 11. Yzaguirre i Maura I, Escoda i Mora J, Bosch Cornet J, Gutiérrez Rincón JA, Dulanto Zabala D, Segura Cardona R. Adaptación al aire enrarecido de las simas y cuevas. Estudio de laboratorio. Apunts Med Esport. 2008; 43: 135-41.
  • 12. Yzaguirre I, Cano R, Burgos G, Sanmartí A. Bad air in de cavities of the Garraf Mountain. EspeleoCat. Federació Catalana d’Espeleologia. 2007; 5: 53-5.
  • 13. Ahmed MW, Kadish AH, Parker MA, Goldberger JJ. FACC effect of physiologic and pharmacologic adrenergic stimulation on heart rate variability. J Am Coll Cardiol. 1994; 24: 1082-90.
  • 14. Akselrod S, Gordon D, Ubel FA, Shannon DC, Berger AC, Cohen RJ. Power spectrum analysis of heart rate fluctuation: A quantitative probe of beat-to-beat cardiovascular control. Science. 1981; 213: 220-2.
  • 15. Miyai N, Arita M, Miyashita K, Morioka I, Shiraishi T, Nishio I. Blood pressure response to heart rate during exercise-test and risk of future hypertension. Hypertension. 2002; 39: 761-6.
  • 16. Hughson RL, Yamamoto Y, McCullough RE, Sutton JR, Reeves JT. Sympathetic and parasympathetic indicators of heart rate control at altitude studied by spectral analysis. J Appl Physiol. 1994; 77: 2537-42.
  • 17. Bernaola M, Ponce JA. Los riesgos de la altitud y su prevención. Seguridad y Salud en el Trabajo. 2012; 68: 9.
  • 18. Best JW. Respiratory and circulatory control at high altitudes.J Exp Biol. 1982; 100: 147-57.
  • 19. Wilmore JH, Costill DL. Fisiología del esfuerzo y del deporte. Barcelona: Paidotribo; 2004.
  • 20. Ojima J. An empirical study on the wake around a squatting worker in a confined space. J Occup Health. 2014; 56: 498-504.
  • 21. Yzaguirre I, Vives J, Gutiérrez JA, Brotons D, Tramullas A. Ergometry and climate change. Apunts Med Esport. 2010; 45: 219-25.
  • 22. Billman GE. Heart rate variability. A historical perspective. Front Physiol. 2011; 86: 5-8.
  • 23. Pichot V, Roche F, Gaspoz JM, Enjolras F, Antoniadis A, Minini P, et al. Relation between heart rate variability and training load in middle-distance runners. Med Sci Sports Exerc. 2000; 32: 1729-1736.
  • 24. Krygier JR, Heathers JA, Shahrestani S, Abbott M, Gross JJ, Kemp AH. Mindfulness meditation, well-being, and heart rate variability: A preliminary investigation into the impact of intensive Vipassana meditation. Int J Psychophysiol. 2013; 89: 305-13.
  • 25. Billman GE. The LF/HF ratio does not accurately measure cardiac sympatho-vagal balance. Front Physiol. 2013; 4: 26.
  • 26. Rodas G, Yanguas X, Pedret C, Ramos J, Capdevila L. Canvis de la variabilitat de la freqüència cardíaca (VFC) de jugadors d’hoquei durant el Campionat del Món de 2006. Apunts Med Esport. 2011; 46: 117-23.
  • 27. Tijvinski SB, Aullik IV. El sistema de respiración i transporte de oxígeno. Medicina deportiva infantil. Moscú: Meditzina; 1991.
  • 28. Manzey D, Lorenz B. Joint NASA-ESA-DARA Study. Part three: Effects of chronically elevated CO2 on mental performance during 26 days of confinement. Aviat Space Environ Med. 1998; 69: 506-14.
  • 29. DiPasquale DM, Strangman GE, Harris NS, Muza SR. Acute mountain sickness, hypoxia, hypobaria and exercise duration each affect heart rate. Int J Sports Med. 2015; 36: 609-14.