Variantes genéticas de susceptibilidad en epilepsia genética generalizada en familias colombianas

  1. Tejada Moreno, Johanna 1
  2. Carrizosa Moog, Jaime 2
  3. Gomez Castillo, Christhian 2
  4. Medina Malo, Carlos 3
  5. Uscategui, Angelica 4
  6. Guio, Laura 3
  7. Cabrera Hemer, Dagoberto 2
  8. Rojas, Winston 5
  9. Cornejo Ochoa, William 2
  10. Pineda Trujillo, Nicolás 1
  1. 1 Grupo Mapeo Genético, Departamento de Pediatria, Facultad de Medicina. Universidad de Antioquia. Medellín-Colombia.
  2. 2 Pediaciencias, Departamento de Pediatria, Facultad de Medicina. Universidad de Antioquia. Medellín-Colombia.
  3. 3 Liga Central Contra la Epilepsia, LICCE. Bogotá-Colombia.
  4. 4 Departamento de Pediatria. Universidad Nacional de Colombia. Bogotá-Colombia.
  5. 5 Genética Molecular. Insitituto de Biología, Universidad de Antioquia. Medellín-Colombia.
Revista:
Acta Neurológica Colombiana

ISSN: 2422-4022 0120-8748

Año de publicación: 2018

Volumen: 34

Número: 3

Páginas: 175-183

Tipo: Artículo

DOI: 10.22379/24224022209 DIALNET GOOGLE SCHOLAR lock_openAcceso abierto editor

Otras publicaciones en: Acta Neurológica Colombiana

Resumen

INTRODUCCIÓN: Las epilepsias genéticas generalizadas (EGG) siguen patrones de herencia compleja. Este fenotipo es producto de la interacción de diferentes genes con factores ambientales. Los genes/loci más consistentemente asociados con este grupo de epilepsias son ECA1, ECA2-GABRG2, ECA3-CLCN2 (también conocido como JME6-CLCN2), JME1-EFHC1 y JME5-GABRA1. En Colombia poco se sabe sobre la contribución de las variantes genéticas en estos genes a la susceptibilidad para ser afectado por cualquiera de las formas de EGG. Nuestro propósito fue evaluar el papel de los cinco genes/loci más consistentemente asociados en otros estudios en un grupo de familias colombianas con EGG. MÉTODOS: Se evaluaron dos marcadores para cada locus/gen. Los genotipos se obtuvieron mediante las técnicas de PCR-RFLP y ARMS-Tetraprimer. Los análisis estadísticos incluyeron pruebas de asociación alélica y haplotípica, además de pruebas de interacción gen-gen. RESULTADOS: Se incluyeron 98 familias, de las cuales 51 fueron epilepsia de ausencias, mientras que 47 fueron epilepsia mioclónica juvenil. Se identificó una interacción significativa entre el alelo G del marcador rs4428455 (valor P = 0,0008; gen GABRA1) y el alelo G de marcador rs719395 (valor P = 0,002; gen EFHC1). CONCLUSIÓN: Estos dos marcadores parecen incrementar el riesgo de EGG en población colombiana. Otros genes no analizados aquí podrían estudiarse con una muestra de mayor tamaño.

Referencias bibliográficas

  • Annegers JF, Rocca WA, Hauser WA. Causes of epilepsy: contributions of the Rochester epidemiology project. Mayo Clin Proc, 1996;71(6):570-5.
  • Hempelmann A, Taylor KP, Heils A, Lorenz S, Prud'homme JF, Nabbout R, et al. Exploration of the genetic architecture of idiopathic generalized epilepsies. Epilepsia. 2006;47(10):1682-90.
  • Weber YG, Lerche H. Genetic mechanisms in idiopathic epilepsies. Dev Med Child Neurol. 2008;50(9):648-54.
  • Hirose S, Okada M, Kaneko S, Mitsudome A. Are some idiopathic epilepsies disorders of ion channels? A working hypothesis. Epilepsy Res. 2000;41(3):191-204.
  • Wallace RH, Scheffer IE, Barnett S, Richards M, Dibbens L, Desai RR, et al. Neuronal sodium-channel alpha1-subunit mutations in generalized epilepsy with febrile seizures plus. Am J Hum Genet. 2001;68(4):859-65.
  • Winawer MR. Epilepsy genetics. Neurologist. 2002;8(3):133-51.
  • Fong GC, Shah PU, Gee MN, Serratosa JM, Castroviejo IP, Khan S, et al. Childhood absence epilepsy with tonicclonic seizures and electroencephalogram 3-4-Hz spike and multi-spike-slow wave complexes: linkage to chromosome 8q24. Am J Hum Genet. 1998;63(4):1117-29.
  • Sugimoto Y, Morita R, Amano K, Fong CY, Shah PU, Castroviejo IP, et al. Childhood absence epilepsy in 8q24: refinement of candidate region and construction of physical map. Genomics. 2000;68(3):264-72.
  • Wallace RH, Marini C, Petrou S, Harkin LA, Bowser DN, Panchal RG, et al. Mutant GABA(A) receptor gamma2-subunit in childhood absence epilepsy and febrile seizures. Nat Genet. 2001;28(1):49-52.
  • Kananura C, Haug K, Sander T, Runge U, Gu W Hallmann K, et al. A splice-site mutation in GABRG2 associated with childhood absence epilepsy and febrile convulsions. Arch Neurol. 2002;59(7):1137-41.
  • Sander T, Schulz H, Saar K, Gennaro E, Riggio MC, Bianchi A, et al. Genome search for susceptibility loci of common idiopathic generalised epilepsies. Hum Mol Genet. 2000;9(10):1465-72.
  • Haug K, Warnstedt M, Alekov AK, Sander T, Ramírez A, Poser B, et al. Mutations in CLCN2 encoding a voltage-gated chloride channel are associated with idiopathic generalized epilepsies. Nat Genet. 2003;33(4):527-32.
  • D'Agostino D, Bertelli M, Gallo S, Cecchin S, Albiero E, Garofalo PG, et al. Mutations and polymorphisms of the CLCN2 gene in idiopathic epilepsy. Neurology. 2004;63(8):1500-2.
  • Stogmann E, Lichtner P, Baumgartner C, Schmied M, Hotzy C, Asmus F, et al. Mutations in the CLCN2 gene are a rare cause of idiopathic generalized epilepsy syndromes. Neurogenetics. 2006;7(4):265-8.
  • Saint-Martin C, Gauvain G, Teodorescu G, Gourfinkel-An I, Fedirko E, Weber YG, et al. Two novel CLCN2 mutations accelerating chloride channel deactivation are associated with idiopathic generalized epilepsy. Hum Mutat. 2009;30(3):397-405.
  • Cossette P, Liu L, Brisebois K, Dong H, Lortie A, Vanasse M, et al. Mutation of GABRA1 in an autosomal dominant form Variantes genéticas de susceptibilidad en epilepsia genética generalizada en familias colombianas of juvenile myoclonic epilepsy. Nat Genet. 2002;31(2):184-9.
  • Liu AW Delgado-Escueta AV, Serratosa JM, Alonso ME, Medina MT, Gee MN, et al. Juvenile myoclonic epilepsy locus in chromosome 6p21.2-p11: linkage to convulsions and electroencephalography trait. Am J Hum Genet, 1995;57(2):368-81.
  • Liu AW Delgado-Escueta AV, Gee MN, Serratosa JM, Zhang QW Alonso ME, et al. Juvenile myoclonic epilepsy in chromosome 6p12-p11: locus heterogeneity and recombinations. Am J Med Genet. 1996;63(3):438-46.
  • Bai D, Alonso ME, Medina MT, Bailey JN, Morita R, Cordova S et al. Juvenile myoclonic epilepsy: linkage to chromosome 6p12 in Mexico families. Am J Med Genet. 2002;113(3):268-74.
  • Suzuki T, Delgado-Escueta AV, Aguan K, Alonso ME, Shi J, Hara Y, et al. Mutations in EFHC1 cause juvenile myoclonic epilepsy. Nat Genet 2004;36(8):842-9.
  • Elmslie FV, Rees M, Williamson MP, Kerr M, Kjeldsen MJ, Pang KA, et al. Genetic mapping of a major susceptibility locus for juvenile myoclonic epilepsy on chromosome 15q. Hum Mol Genet. 1997;6(8):1329-34.
  • Greenberg DA, Delgado-Escueta AV, Widelitz H, Sparkes RS, Treiman L, Maldonado HM, et al. Juvenile myoclonic epilepsy (JME) may be linked to the BF and HLA loci on human chromosome 6. Am J Med Genet. 1988;31(1):185-92.
  • Purcell S, Cherny SS, Sham PC. Genetic Power Calculator: design of linkage and association genetic mapping studies of complex traits. Bioinformatics, 2003;19(1):149-50.
  • International HapMap Consortium. The International HapMap Project. Nature. 2003;426(6968):789-96.
  • Rozen S, Skaletsky H. Primer3 on the WWW for general users and for biologist programmers. Methods Mol Biol. 2000;132:365-86.
  • Collins A, Ke X. Primer1: Primer Design Web Service for Tetra-Primer ARMS-PCR. Open Bioinform J. 2012;6:55-8.
  • Vincze T, Posfai J, Roberts J. NEBcutter: A program to cleave DNA with restriction enzymes. Nucleic Acids Res. 2003;31(13):3688-91.
  • O'Connell JR, Weeks DE. PedCheck: a program for identification of genotype incompatibilities in linkage analysis. Am J Hum Genet. 1998;63(1):259-66.
  • Purcell S, Neale B, Todd-Brown K, Thomas L, Ferreira MA, Bender D, et al. PLINK: a tool set for whole-genome association and population-based linkage analyses. Am J Hum Genet. 2007;81(3):559-75.
  • R Foundation for Statistical Computing. R: A language and environment for statistical computing, reference index version 2.2.1. 2005, Viena, Austria.
  • Barrett JC, Fry B, Maller J, Daly MJ. Haploview: analysis and visualization of LD and haplotype maps. Bioinformatics. 2005;21(2):263-5.
  • Barrett JC. Haploview: Visualization and analysis of SNP genotype data. Cold Spring Harb Protoc. 2009;2009(10):pdb ip71.
  • Rousset F. genepop'007: a complete re-implementation of the genepop software for Windows and Linux. Mol Ecol Resour. 2008;8(1):103-6.
  • Excoffier L, Lischer LE. Arlequin suite ver 3.5: a new series of programs to perform population genetics analyses under Linux and Windows. Mol Ecol Resour. 10(3):564-7.
  • Dudbridge F. Pedigree disequilibrium tests for multilocus haplotypes. Genet Epidemiol. 2003;25(2):115-21.
  • Dudbridge F. Likelihood-based association analysis for nuclear families and unrelated subjects with missing genotype data. Hum Hered. 2008;66(2):87-98.
  • Hart D. Principles of population genetics. Tercera edición. Sunderland, Massachusetts: Sinaver Associates; 1997.
  • Nielsen DM, Ehm MG, Weir BS. Detecting marker-disease association by testing for Hardy-Weinberg disequilibrium at a marker locus. Am J Hum Genet. 1998;63(5):1531-40.
  • Wray NR, Visscher PM. Population genetics and its relevance to gene mapping. En: Neale BM, Ferreira MAR, Medland SE, Posthuma D, editores. Statistical genetics: Gene mapping through linkage and association. Abingdon, Reino Unido: Taylor and Francis; 2008.
  • Rodríguez-Acevedo A, Morales O, Durango H, Pineda-Trujillo N. Análisis de isonimia en una muestra de padres de pacientes antioqueños con fibrosis quística. Biomédica. 2012;32(1).
  • Bedoya G, García J, Montoya P, Rojas W Amézquita ME, Soto I, et al. Análisis de isonimia entre poblaciones del noroeste de Colombia. Biomédica. 2006;26:538-45.
  • Trikalinos TA, Salanti G, Khoury MJ, Ioannidis JP. Impact of violations and deviations in Hardy-Weinberg equilibrium on postulated gene-disease associations. Am J Epidemio. 2006;163(4):300-9.
  • Salanti G, Amountza G, Ntzani EE, Ioannidis JP. Hardy-Weinberg equilibrium in genetic association studies: an empirical evaluation of reporting, deviations, and power. Eur J Hum Genet. 2005;13(7):840-8.
  • Maljevic S, Krampfl K, Cobilanschi J, Tilgen N, Beyer S, Weber YG, et al. A mutation in the GABA(A) receptor alpha(1)-subunit is associated with absence epilepsy. Ann Neurol. 2006;59(6):983-7.
  • Evans DM. Factors affecting power and type one error in association. En: Neale BM, Ferreira MAR, Medland SE, Posthuma D, editores. Statistical genetics: Gene mapping through linkage and association. Abingdon, Reino Unido: Taylor and Francis; 2008.
  • Stogmann E, Lichtner P, Baumgartner C, Bonelli S, Assem-Hilger E, Leutmezer F, et al. Idiopathic generalized epilepsy phenotypes associated with different EFHC1 mutations. Neurology. 2006;67(11):2029-31.
  • Bai D, Bailey JN, Durón RM, Alonso ME, Medina MT, Martínez-Juárez IE, et al. DNA variants in coding region of EFHC1: SNPs do not associate with juvenile myoclonic epilepsy. Epilepsia. 2009;50(5):1184-90.
  • Medina MT, Suzuki T, Alonso ME, Durón RM, Martínez-Juárez IE, Bailey JN, et al. Novel mutations in Myoclonin1/ EFHC1 in sporadic and familial juvenile myoclonic epilepsy. Neurology. 2008:27;70(22 Pt 2):2137-44.
  • Hernandez CC, Klassen TL, Jackson LG, Gurba K, Hu N, Noebels JL, Macdonald RL. Deleterious Rare Variants Reveal Risk for Loss of GABAA Receptor Function in Patients with Genetic Epilepsy and in the General Population. PLoS One. 2016 Sep 13;11(9):e0162883. Erratum in: PLoS One. 2016 Nov 21;11(11):e0167264.
  • Kodera H, Ohba C, Kato M, Maeda T, Araki K, Tajima D, et al. De novo GABRA1 mutations in Ohtahara and West syndromes. Epilepsia. 2016;57(4):566-73.