Inmunoterapia con células CAR-T en hematooncología pediátrica

  1. Isabel Mirones
  2. Lucas Moreno
  3. Ana Patiño-García
  4. Garbiñe Lizeaga
  5. José M. Moraleda
  6. María Luisa Toribio
  7. Antonio Pérez-Martínez
Revista:
Anales de Pediatría: Publicación Oficial de la Asociación Española de Pediatría ( AEP )

ISSN: 1695-4033 1696-4608

Año de publicación: 2020

Volumen: 93

Número: 1

Páginas: 59-59

Tipo: Artículo

DOI: 10.1016/J.ANPEDI.2019.12.014 PMID: 32107177 SCOPUS: 2-s2.0-85080061842 DIALNET GOOGLE SCHOLAR lock_openAcceso abierto editor

Otras publicaciones en: Anales de Pediatría: Publicación Oficial de la Asociación Española de Pediatría ( AEP )

Resumen

A pesar de ser una enfermedad rara, el cáncer es la primera causa de mortalidad por enfermedad durante la edad pediátrica en los países desarrollados. En este momento, la irrupción de nuevos tratamientos como la inmunoterapia constituye un nuevo paradigma clínico y regulatorio. Uno de estos tipos de inmunoterapia es la inmunoterapia celular. En particular, los medicamentos de terapia avanzada con receptores antigénicos quiméricos en los linfocitos T (CAR-T), y en concreto las células CAR-T19, han supuesto un nuevo escenario en el abordaje de los tumores hematológicos, como la leucemia aguda linfoblástica y los linfomas de células tipo B. La aprobación por las autoridades regulatorias de tisagenlecleucel y axicabtagene ciloleucel, ha impulsado la puesta en marcha del Plan Nacional de Terapias Avanzadas-Medicamentos CART en Espana, ˜ evidenciándose no solo la conveniencia de identificar los centros más adecuados para su administración, sino la necesidad de que estos sufran una profunda transformación para que su actividad asistencial se extienda en algunos casos a la capacidad de fabricación propia de este tipo de terapias. Los hospitales especializados en hematooncología pediátrica tienen por tanto el reto de evolucionar hacia un modelo asistencial que integre la inmunoterapia celular, dotándose de capacidad propia para gestionar todos los aspectos relativos al uso, fabricación y administración de estos nuevos tratamientos

Referencias bibliográficas

  • Farber, S., Diamond, L.K., Mercer, R.D., Sylvester, R.F., Wolff, J.A., Temporary remissions in acute leukemia in children produced by folic acid antagonist, 4-aminopteroyl-glutamic acid (aminopterin). N Engl J Med 238 (1948), 787–793.
  • Davila, M.L., Sadelain, M., Biology and clinical application of CAR T cells for B cell malignancies. Int J Hematol. 104 (2016), 6–17.
  • Fesnak, A.D., June, C.H., Levine, B.L., Engineered T cells: Thepromise and challenges of cancerimmunotherapy. Nat RevCancer. 16 (2016), 566–581.
  • Park, J.H., RivièreI, Gonen, M., Wang, X., Sénéchal, B., Curran, K.J., et al. Long-term follow-up of CD19 CAR therapy in acute lymphoblastic leukemia. N Engl J Med. 378 (2018), 449–459.
  • Maher, J., Brentjens, R.J., Gunset, G., Rivière, I., Sadelain, M., Human T-lymphocyte cytotoxicity and proliferation directed by a single chimeric TCRζ/CD28 receptor. Nat Biotechnol. 20 (2002), 70–75.
  • Finney, H.M., Lawson, A.D., Bebbington, C.R., Weir, A.N., Chimeric receptors providing both primary and costimulatory signaling in T cells from a single gene product. J Immunol. 161 (1998), 2791–2797.
  • Porter, D.L., Levine, B.L., Kalos, M., Bagg, A., June, C.H., Chimeric antigen receptor-modified T cells in chronic lymphoid leukemia. N Engl J Med. 365 (2011), 725–733.
  • June, C.H., Sadelain, M., Chimeric Antigen Receptor Therapy. N Engl J Med 379 (2018), 64–73.
  • Fernández, L., Metais, J.Y., Escudero, A., Vela, M., Valentín, J., Vallcorba, I., et al. Memory T cellsexpressingan NKG2D-CAR efficiently target osteosarcomacells. Clin Cancer Res. 23 (2017), 5824–5835.
  • Harrison, R.P., Zylberberg, E., Ellison, S., Levine, B.L., Chimericantigen receptor–T celltherapymanufacturing: modellingtheeffect of offshore productiononaggregatecost of goods. Cytotherapy. 21 (2019), 224–233.
  • Sánchez-Martínez, D., Baroni, M.L., Gutierrez-Agüera, F., Roca-Ho, H., Blanch-Lombarte, O., González-García, S., et al. Fratricide-resistant CD1a-specific CAR T-cells for the treatment of cortical T-cell acute lymphoblastic leukemia. Blood. 133 (2019), 2291–2304.
  • Bautista, F., Gallego, S., Cañete, A., Mora, J., Díaz de Heredia, C., Cruz, O., et al. Ensayos clínicos precoces en oncología pediátrica en España: una perspectiva nacional. An Pediatr (Barc). 2017 87 (2017), 155–163.
  • Wedekind, M.F., Denton, N.L., Chen, C.Y., Cripe, T.P., Pediatric cancer immunotherapy: Opportunities and challenges. Paediatr Drugs. 20 (2018), 395–398.
  • Rosenberg, S.A., Yannelli, J.R., Yang, J.C., Topalian, S.L., Schwartzentruber, D.J., Weber, J.S., et al. Treatment of patients with metastatic melanoma with autologous tumor-infiltrating lymphocytes and interleukin 2. J Natl Cancer Inst. 86 (1994), 1159–1166.
  • Grupp, S.A., Kalos, M., Barret, D., Aplenc, R., Porter, D.L., Rheingold, S.R., et al. Chimeric antigen receptor–modified t cells for acute lymphoid leukemia. N Engl J Med. 368 (2013), 1509–1518.
  • Maude, S.L., Laetsch, T.W., Buechner, J., Rives, S., Boyer, M., Bittencourt, H.et al., Tisagenlecleucel in children and young adults with b-cell lymphoblastic leukemia. New England Journal of Medicine. 378 (2018), 439–448.
  • Eshhar, Z., Waks, T., Gross, G., Schindler, D.G., Specific activation and targeting of cytotoxic lymphocytes through chimeric single chains consisting of antibody-binding domains and the gamma or zeta subunits of the immunoglobulin and T-cell receptors. ProcNatlAcadSci U S A. 90 (1993), 720–724.
  • Gilham, D.E., Maher, J.D.E., Atypical” CAR T cells: NKG2D and Erb-B as examples of natural receptor/ligands to target recalcitrant solid tumors. Immunotherapy. 9 (2017), 723–733.
  • Fernández, L., Fernández, A., Mirones, I., Escudero, A., Cardoso, L., Vela, M.et al., GMP-Compliant Manufacturing of NKG2D CAR Memory T Cells Using CliniMACS Prodigy. Front Immunol., 10, 2019 Oct 10, 2361.
  • U.S. Food&DrugAdministration, 2018 [consultado 9 Mar 2018]. Disponible en https://www.fda.gov/Drugs/InformationOnDrugs/ApprovedDrugs/ucm606540.htm.
  • U.S. Food&DrugAdministration, 2018 [consultado 12 Mar 2018]. Disponible en https://www.fda.gov/biologicsbloodvaccines/cellulargenetherapyproducts/approvedproducts/ucm581222.htm.
  • Perica, K., Curran, K.J., Brentjens, R.J., Giralt, S.A., Building a CAR Garage: Preparing for the Delivery of Commercial CAR T Cell Products at Memorial Sloan Kettering Cancer Center. Biol Blood Marrow Transplant. 24 (2018), 1135–1141.
  • Castella, M., Boronat, A., Martín-Ibáñez, R., Rodríguez, V., Suñé, G., Caballero, M., et al. Development of a Novel Anti-CD19 chimeric antigen receptor: A paradigm for an affordable CAR T cell production at academic institutions. MolTher Methods Clin Dev. 12 (2018), 134–144.
  • Detela, G., Lodge, A., EU RegulatoryPathwaysforATMPs: Standard Accelerated and AdaptivePathways to Marketing Authorisation. MolTher Methods Clin Dev. 13 (2019), 205–232.
  • Elsanhoury, A., Sanzenbacher, R., Reinke, P., Abou-El-Enein, M., Accelerating patients’ access to advanced therapies in the EU. MolTher Methods Clin Dev. 7 (2017), 15–19.
  • Scavone, C., di Mauro, G., Mascolo, A., Berrino, L., Rossi, F., Capuano, A., The new paradigms in clinicalresearch: Fromearly access programs to the novel therapeutic approaches for unmet medical needs. Front Pharmacol., 10, 2019, 111.
  • Seoane-Vazquez, E., Shukla, V., Rodriguez-Monguio, R., Innovation and competition in advancedtherapy medicinal products. EMBO Mol Med., 2019, 11.
  • Bubela, T., Bedford, P., Criscuolo, D., Narayanan, G., Rousseau, C.F., Mačiulaitis, R., et al. Cell and gene therapies: European view on challenges in translation and how to address them. Front Med (Lausanne). 2018, 5, 2018, 158.
  • Carvalho, M., Sepodes, B., Martins, A.P., Regulatory and Scientific Advancements in Gene Therapy: State-of-the-Art of Clinical Applications and of the Supporting European Regulatory Framework. Front Med (Lausanne). 2017, 4, 2017, 182.
  • Coppen, D.G.M., de Bruin, M.L., Leufkens, H.G.M., Hoekman, J., Global regulatory differences for gene and cell based therapies: Consequences and implications for patient access and therapeutic innovation. ClinPharmacolTher. 2018 103 (2018), 120–127.
  • White, M., Whittaker, R., Stoll, E.A., A guide to approaching regulatory considerations for lentiviral mediated gene therapies. Hum Gene Ther Methods. 28 (2017), 163–176.
  • Yu, T.T.L., Gupta, P., Ronfard, V., Vertès, A.A., Bayon, Y., Recent Progress in European Advanced Therapy Medicinal Products and Beyond. Front Bioeng Biotechnol., 6, 2018, 130.
  • Roddie, C., O'Reilly, M., Dias Alves Pinto, J., Vispute, K., Lowdell, M., Manufacturing chimeric antigen receptor T cells: issues and challenges. Cytotherapy. 21 (2019), 327–340.
  • Iyer, R.K., Bowles, P.A., Kim, H.R., Dulgar-Tulloch, A., Industrializing Autologous Adoptive Immunotherapies: Manufacturing Advances and Challenges. Front Med (Lausanne)., 5, 2018, 150.
  • Viga, O.M., Giordano, R., Lazzari, L., Challenges of running a GMP facility for regenerative medicine in a public hospital. Regen Med. 12 (2017), 803–813.
  • Agencia Española del Medicamento y Productos Sanitarios Parte IV. Directrices sobre normas de correcta fabricación específicas para Medicamentos de Terapia Avanzada [consultado 1 Jun 2018]. Disponible en https://www.aemps.gob.es/industria/inspeccionNCF/guiaNCF/docs/normas-correcta-fabricacion/nueva-guia-NCF-ATMPs.pdf.
  • Jenkins, M.J., Farid, S.S., Cost-effectivebioprocessdesignforthe manufacture of allogeneic CAR-T celltherapiesusing a decisional toolwithmulti-attributedecision-makinganalysis. Biochemical Engineering Journal. 137 (2018), 192–204.
  • Graham, C., Jozwik, A., Pepper, A., Benjamin, R., Allogeneic CAR-T Cells: More than ease of access?. Cells., 7(10.), 2018.
  • Aleksandrova, K., Leise, J., Priesner, C., Melk, A., Kubaink, F., Abken, H., et al. Functionality and Cell Senescence of CD4/CD8-Selected CD20 CAR T Cells Manufactured Using the Automated CliniMACS Prodigy Platform. Transfus Med Hemother. 46 (2019), 47–54.