Longitudinal machine learning modeling of MS patient trajectories improves predictions of disability progression

  1. De Brouwer, E.
  2. Becker, T.
  3. Moreau, Y.
  4. Havrdova, E.K.
  5. Trojano, M.
  6. Eichau, S.
  7. Ozakbas, S.
  8. Onofrj, M.
  9. Grammond, P.
  10. Kuhle, J.
  11. Kappos, L.
  12. Sola, P.
  13. Cartechini, E.
  14. Lechner-Scott, J.
  15. Alroughani, R.
  16. Gerlach, O.
  17. Kalincik, T.
  18. Granella, F.
  19. Grand'Maison, F.
  20. Bergamaschi, R.
  21. José Sá, M.
  22. Van Wijmeersch, B.
  23. Soysal, A.
  24. Sanchez-Menoyo, J.L.
  25. Solaro, C.
  26. Boz, C.
  27. Iuliano, G.
  28. Buzzard, K.
  29. Aguera-Morales, E.
  30. Terzi, M.
  31. Trivio, T.C.
  32. Spitaleri, D.
  33. Van Pesch, V.
  34. Shaygannejad, V.
  35. Moore, F.
  36. Oreja-Guevara, C.
  37. Maimone, D.
  38. Gouider, R.
  39. Csepany, T.
  40. Ramo-Tello, C.
  41. Peeters, L.
  42. Show all authors +
Journal:
Computer Methods and Programs in Biomedicine

ISSN: 1872-7565 0169-2607

Year of publication: 2021

Volume: 208

Type: Article

DOI: 10.1016/J.CMPB.2021.106180 GOOGLE SCHOLAR

Sustainable development goals