Longitudinal machine learning modeling of MS patient trajectories improves predictions of disability progression

  1. De Brouwer, E.
  2. Becker, T.
  3. Moreau, Y.
  4. Havrdova, E.K.
  5. Trojano, M.
  6. Eichau, S.
  7. Ozakbas, S.
  8. Onofrj, M.
  9. Grammond, P.
  10. Kuhle, J.
  11. Kappos, L.
  12. Sola, P.
  13. Cartechini, E.
  14. Lechner-Scott, J.
  15. Alroughani, R.
  16. Gerlach, O.
  17. Kalincik, T.
  18. Granella, F.
  19. Grand'Maison, F.
  20. Bergamaschi, R.
  21. José Sá, M.
  22. Van Wijmeersch, B.
  23. Soysal, A.
  24. Sanchez-Menoyo, J.L.
  25. Solaro, C.
  26. Boz, C.
  27. Iuliano, G.
  28. Buzzard, K.
  29. Aguera-Morales, E.
  30. Terzi, M.
  31. Trivio, T.C.
  32. Spitaleri, D.
  33. Van Pesch, V.
  34. Shaygannejad, V.
  35. Moore, F.
  36. Oreja-Guevara, C.
  37. Maimone, D.
  38. Gouider, R.
  39. Csepany, T.
  40. Ramo-Tello, C.
  41. Peeters, L.
  42. Montrer des auteurs +
Revue:
Computer Methods and Programs in Biomedicine

ISSN: 1872-7565 0169-2607

Année de publication: 2021

Volumen: 208

Type: Article

DOI: 10.1016/J.CMPB.2021.106180 GOOGLE SCHOLAR

Objectifs de Développement Durable