Application of genomic surveillance in Cantabria to keep the COVID-19 pandemic under control

  1. Curiel-del-Olmo, Soraya 14
  2. Rodríguez-Lozano, Jesús 2
  3. Aginagalde, Adrián-Hugo 3
  4. Barquín, Gloria 4
  5. Pardo, Jaime 4
  6. Damián, Elena 4
  7. Velasco, Silvia 2
  8. Gozalo, Mónica 2
  9. Iglesias-Caballero, María 5
  10. López-González, María 4
  11. Freije, Ana 4
  12. López-Gómez, Tania 4
  13. Calvo-Montes, Jorge 2
  14. Wallmann, Reinhard 4
  1. 1 Servicio Cántabro de Salud. Hospital Universitario Marqués de Valdecilla (HUMV). Unidad de Genética. Santander, España
  2. 2 Hospital Universitario Marqués de Valdecilla
    info

    Hospital Universitario Marqués de Valdecilla

    Santander, España

    ROR https://ror.org/01w4yqf75

  3. 3 Servicio Cántabro de Salud. Fundación Marqués de Valdecilla. Observatorio de Salud Pública de Cantabria. Santander, España
  4. 4 Gobierno de Cantabria
    info

    Gobierno de Cantabria

    Santander, España

  5. 5 Centro Nacional de Microbiología
    info

    Centro Nacional de Microbiología

    Majadahonda, España

Revista:
Gaceta médica de Bilbao: Revista oficial de la Academia de Ciencias Médicas de Bilbao. Información para profesionales sanitarios

ISSN: 0304-4858 2173-2302

Año de publicación: 2022

Volumen: 119

Número: 1

Páginas: 27-37

Tipo: Artículo

Otras publicaciones en: Gaceta médica de Bilbao: Revista oficial de la Academia de Ciencias Médicas de Bilbao. Información para profesionales sanitarios

Resumen

Algunas variantes del virus SARS-CoV-2 están causando, actualmente, especial preocupación en todo el mundo por su supuesta capacidad de evadir la respuesta inmune en personas previamente inmunizadas. Debido a esto, muchos gobiernos, incluido el de España, han implementado intervenciones no farmacológicas (NPI) en un intento de evitar que las variantes de preocupación (VOCs) sean importadas y, en caso de que lo sean, facilitar su detección temprana controlar su expansión en nuevas regiones. En este trabajo, la eficacia real de las actuales NPIs es sometida a examen utilizando, como ejemplo real y práctico, el primer brote de COVID-19 debido a la variante P.1 (variante Gamma) surgido en Cantabria. Asimismo, se evalúa la utilidad de la vigilancia genómica de cara a mantener una situación pandémica bajo control. Por último, se plantea la cuestión de si realmente existe en España, y en cada Comunidad Autónoma, la capacidad de realizar análisis genéticos suficientemente amplios, en un tiempo suficientemente corto y a un número de muestras suficientemente elevado, como para tener datos en tiempo real sobre la evolución de las variantes.El brote de COVID-19 que se reporta aquí se pudo mantener bajo control, evitando su expansión. Sin embargo, tras el correspondiente análisis, este éxito parece haberse debido más a una capacidad de transmisión sorprendentemente baja de este linaje que a una gran eficiencia de las medidas no farmacológicas existentes. De hecho, la tasa de ataque de este brote fue solo del 3,5%.

Referencias bibliográficas

  • WHO - World Health Organization., “WHO | Pneumonia of unknown cause – China.” [Online]. Available: https://www.who.int/csr/don/05-january-2020-pneumonia-of-unkown-cause-china/en/. [Accessed: 02-Apr-2021].
  • “GISAID - Initiative.” [Online]. Available: https://www.gisaid.org/. [Accessed: 26-Mar-2021].
  • N. R. Faria et al., “Genomic characterisation of an emergent SARS-CoV-2 lineage in Manaus: preliminary findings - SARS-CoV-2 coronavirus,” Virological.org, vol. January 12, 2021.
  • A. F. Martins et al., “Detection of SARS-CoV-2 lineage P.1 in patients from a region with exponentially increasing hospitalisation rate, February 2021, Rio Grande do Sul, Southern Brazil,” Eurosurveillance, vol. 26, no. 12, p. 2100276, Mar. 2021, doi: 10.2807/1560-7917. ES.2021.26.12.2100276.
  • L. F. Buss et al., “Three-quarters attack rate of SARS-CoV-2 in the Brazilian Amazon during a largely unmitigated epidemic,” Science (80-. )., vol. 371, no. 6526, pp. 288–292, Jan. 2021, doi: 10.1126/science.abe9728.
  • C. M. Voloch et al., “Genomic characterization of a novel SARS-CoV-2 lineage from Rio de Janeiro, Brazil,” medRxiv. medRxiv, p. 2020.12.23.20248598, 26-Dec-2020, doi: 10.1101/2020.12.23.20248598.
  • J. M. Bursky, R. E. Chen, and X. Zhang, “Resistance of SARS-CoV-2 variants to neutralization by monoclonal and serum-derived polyclonal antibodies,” doi: 10.1038/s41591-021-01294-w.
  • A. J. Greaney et al., “Complete Mapping of Mutations to the SARS-CoV-2 Spike Receptor-Binding Domain that Escape Antibody Recognition,” Cell Host Microbe, vol. 29, no. 1, pp. 44-57.e9, Jan. 2021, doi: 10.1016/j.chom.2020.11.007.
  • ECDC - Eurpoean Centre for Disease Prevention and Control;, “Risk related to spread of new SARS-CoV-2 variants of concern in the EU/EEA,” 2020.
  • T. Golubchik and K. A. Lythgoe, “Early analysis of a potential link between viral load and the N501Y mutation in the SARS-COV-2 spike protein,” medRxiv, vol. 1, no. 2, p. 2021.01.12.20249080, Jan. 2021, doi: 10.1101/2021.01.12.20249080.
  • H. Tegally et al., “Emergence and rapid spread of a new severe acute respiratory syndrome-related coronavirus 2 (SARS-CoV-2) lineage with multiple spike mutations in South Africa,” medRxiv, vol. 10. medRxiv, p. 2020.12.21.20248640, 22-Dec-2020, doi: 10.1101/2020.12.21.20248640.
  • CDC - Centers for Disease Control and Prevention;, “SARS-CoV-2 Variant Classifications and Definitions.” [Online]. Available: https://www.cdc.gov/coronavirus/2019-ncov/cases-updates/variant-surveillance/variant-info. html#Interest. [Accessed: 24-Mar-2021].
  • E. C. Sabino et al., “Resurgence of COVID-19 in Manaus, Brazil, despite high seroprevalence,” The Lancet, vol. 397, no. 10273. Elsevier B.V., pp. 452–455, 06-Feb-2021, doi: 10.1016/S0140-6736(21)00183-5.
  • J. L. Guthrie et al., “Detection of the novel SARS-CoV-2 European lineage B.1.177 in Ontario, Canada,” J. Clin. Virol. Plus, vol. 1, no. 1–2, p. 100010, Jun. 2021, doi: 10.1016/j.jcvp.2021.100010.
  • A. Rambaut et al., “Preliminary genomic characterisation of an emergent SARS-CoV-2 lineage in the UK defined by a novel set of spike mutations - SARS-CoV-2 coronavirus / nCoV-2019 Genomic Epidemiology - Virological,” Virological.org, 2020. [Online]. Available: https://virological.org/t/preliminary-genomic-characterisation-of-an-emergent-sars-cov-2-lineage-in-the-uk-defined-by-a-no-vel-set-of-spike-mutations/563. [Accessed: 26-Mar-2021].
  • V. Borges et al., “Tracking SARS-CoV-2 VOC 202012/01 (lineage B.1.1.7) dissemination in Portugal: insights from nationwide RT-PCR Spike gene drop out data - SARS-CoV-2 coronavirus - Virological,” Virological.org, 2021. [Online]. Available: https://virological.org/t/tracking-sars-cov-2-voc-202012-01-lineageb-1-1-7-dissemination-in-portugal-insights-from-nationwide-rt-pcr-spike-gene-drop-out-data/600. [Accessed: 02-Apr-2021].
  • The Economist, “It’s a family affair - The same covid-19 mutations are appearing in different places | Graphic detail | The Economist,” 2021. [Online]. Available: https://www.economist. com/graphic-detail/2021/02/27/the-same-covid-19-mutations-are-appearing-in-different-places. [Accessed: 24-Mar-2021].
  • Université.de.Genève, “Protocol for specific RT-PCRs for marker regions of the Spike region indicative of the UK SARS-CoV-2 variant B.1.1.7 and the South African variant 501Y.V2,” 2020.
  • G. Palacios et al., “Panmicrobial Oligonucleotide Array for Diagnosis of Infectious Diseases,” Emerg. Infect. Dis., vol. 13, no. 1, pp. 73–81, 2007, doi: 10.3201/eid1301.060837.
  • U. Pérez-Sautu et al., “Target-independent high-throughput sequencing methods provide evidence that already known human viral pathogens play a main role in respiratory infections with unexplained etiology,” Emerg. Microbes Infect., vol. 8, no. 1, pp. 1054–1065, Jan. 2019, doi: 10.1080/22221751.2019.1640587.
  • J. Quick, “ARTIC Coronavirus Method Development Community 1 more workspace Illumina Nextera DNA Flex library construction and sequencing for SARS-CoV-2: Adapting COVID-19 ARTIC protocol NEBnext library construction and sequencing for SARS-CoV-2: Adapting COVID-19 ARTIC protocol,” Apr. 2020, doi: 10.17504/protocols.io.bdp7i5rn.
  • “GitHub - nf-core/viralrecon: Assembly and intrahost/low-frequency variant calling for viral samples.” [Online]. Available: https://github. com/nf-core/viralrecon. [Accessed: 20-May-2021].
  • “Nextflow - A DSL for parallel and scalable computational pipelines.” [Online]. Available: https://www.nextflow.io/. [Accessed: 20-May-2021].
  • P. A. Ewels et al., “The nf-core framework for community-curated bioinformatics pipelines,” Nature Biotechnology, vol. 38, no. 3. Nature Research, pp. 276–278, 01-Mar-2020, doi: 10.1038/s41587-020-0439-x.
  • “Babraham Bioinformatics - FastQC A Quality Control tool for High Throughput Sequence Data.” [Online]. Available: https://www.bioin- formatics.babraham.ac.uk/projects/fastqc/. [Accessed: 20-May-2021].
  • S. Chen, Y. Zhou, Y. Chen, and J. Gu, “Fastp: An ultra-fast all-in-one FASTQ preprocessor,” in Bioinformatics, 2018, vol. 34, no. 17, pp. i884–i890, doi: 10.1093/bioinformatics/bty560.
  • B. Langmead and S. L. Salzberg, “Fast gapped-read alignment with Bowtie 2,” Nat. Methods, vol. 9, no. 4, pp. 357–359, Apr. 2012, doi: 10.1038/nmeth.1923.
  • N. D. Grubaugh et al., “An amplicon-based sequencing framework for accurately measuring intrahost virus diversity using PrimalSeq and iVar,” Genome Biol., vol. 20, no. 1, Jan. 2019, doi: 10.1186/s13059-018-1618-7.
  • H. Li et al., “The Sequence Alignment/Map format and SAMtools,” Bioinformatics, vol. 25, no. 16, pp. 2078–2079, Aug. 2009, doi: 10.1093/bioinformatics/btp352.
  • D. E. Wood, J. Lu, and B. Langmead, “Improved metagenomic analysis with Kraken 2,” Genome Biol., vol. 20, no. 1, pp. 1–13, Nov. 2019, doi: 10.1186/s13059-019-1891-0.
  • Gobierno.de.España - Ministerio.de.Sanidad, “BOE.es - BOE-A-2021-2458 Orden SND/133/2021, de 17 de febrero, sobre las condiciones de cuarentena a las que deben someterse las personas procedentes de la República Federativa de Brasil y la República de Sudáfrica a su llegada a España, durante la situac,” 2021. [Online]. Available: https://www.boe.es/buscar/ doc.php?id=BOE-A-2021-2458. [Accessed: 08-Apr-2021].
  • Gobierno.de.España-Ministerio.de.Sanidad, “BOE.es - BOE-A-2021-3310 Orden SND/181/2021, de 2 de marzo, sobre las condiciones de cuarentena a las que deben someterse las personas procedentes de países de riesgo, durante la situación de crisis sanitaria ocasionada por el COVID-19.” [Online]. Available: https://www.boe.es/diario_boe/txt .php?id=BOE-A-2021-3310. [Accessed: 08-Apr-2021].
  • Gobierno.de.España-Ministerio.de.Sanidad, “BOE. es - BOE-A-2020-14821 Resolución de 23 de noviembre de 2020, de la Subsecretaría, por la que se publica la Adenda al Convenio entre la Dirección General de Salud Pública y AENA, S.M.E, SA, para el control sanitario de la entrada de pasajeros de vuelos,” 2021. [Online]. Available: https://www.boe.es/diario_boe/txt .php?id=BOE-A-2020-14821. [Accessed: 08-Apr-2021].
  • “Spain Travel Health.” [Online]. Available: https:// www.spth.gob.es/. [Accessed: 08-Apr-2021].
  • “Ministerio de Sanidad, Consumo y Bienestar Social.” [Online]. Available: https://www.mscbs.gob.es/. [Accessed: 08-Apr-2021].
  • PHE-Public.Heath.England, “SARS-CoV-2 variants of concern and variants under investigation in England,” 2021.
  • WHO - World Health Organization., “COVID-19 Weekly Epidemiological Update Global overview.”